Курс „Deep Learning with NLP” (событие в архиве)

Відбулось
2 листопада (вівторок)
Місце
Online
Вартість
16 000 грн/міс

Курс буде цікавим data science спеціалістам та спеціалісткам, що вже працюють з класичним NLP, але бажають покращити свою експертизу в сфері найбільш сучасних підходів вирішення NLP задач.

Раніше у нас не було моделей, що могли б наслідувати природну мову, а тому якісне вирішення багатьох NLP завдань залишалося неможливим. Однак сьогодні майже будь-яку бізнес проблему можна ефективно вирішити за допомогою Deep Learning підходів. Глибокі нейронні мережі дозволяють створювати чатботів, які спілкуються з користувачами на тому ж рівні, що й живі люди. А ще — перекладають, знаходять та виправляють помилки в тексті, розпізнають іменовані сутності та ключові слова.

Саме завдяки Deep Learning підходам пошуковик так чітко розуміє ваші запити, а детектор плагіату ідентифікує крадений текст, навіть якщо ви замінили всі слова синонімами.

Курс буде цікавий Data Science спеціалістам та спеціалісткам, що вже працюють з класичним NLP, але бажають покращити свою експертизу у сфері найбільш сучасних підходів вирішення NLP завдань.

2 листопада 2021. Курс триває 3 місяці, вебінари
16 000 грн/міс. 48 000 грн при повній оплаті курсу, 16 800 грн/міс при оплаті частинами
25 студентів. Кожен студент отримує регулярний фідбек від кураторів групи

Деталі та реєстрація

Кураторка

Галина Олійник

Senior Data Scientist в Delivery Hero. Має досвід в створенні end-to-end NLP рішень, що сфокусовані на аналізі даних для high-load систем з метою ідентифікації необхідних властивостей й подальшої трансформації текстових даних.

Програма курсу

1. Review of neural networks architectures: forward NNs, RNNs, CNNs, transformers.
Поговоримо про те, яким чином працюють найбільш популярні архітектури нейронних мереж та про те, які з них найчастіше використовуються в deep learning NLP моделях.

2. Language models: from Word2Vec to BERT.
N-gram language models, Word2Vec, GloVe, GPT-1 and GPT-2, BERT.

3. Named entity recognition: CRF vs. ELMo.
Розглянемо проблему розпізнавання іменованих сутностей з точки зору і статистичних моделей (PGMs), і глибоких нейронних мереж.

4. Text summarization: LexRank vs. attention-based NN.
Як створювати короткі саммарі тексту за допомогою класичних методів машинного навчання (LexRank) й складніших методологій (BERT).

5. Text similarity measurement: from string-based similarity to embedding-based similarity.
Вимірювання схожості текстів за допомогою різних підходів:
— string-based similarity;
— corpus-based similarity;
— knowledge-based similarity;
— hybrid similarity measures.

6. Machine translation: probabilistic models vs. deep NNs.
Поетапно розглянемо підходи до розв’язання проблеми автоматичного перекладу — від класичних моделей, що базуються на теорії ймовірності, до глибоких нейронних мереж.

7. Information extraction: keywords, topics and more.
Розпізнавання релевантної інформації в тексті за допомогою алгоритмів keywords extraction й topic modeling. Імплементація алгоритмів за допомогою класичних підходів (RAKE, LDA, etc.) і підходів Deep Learning.

8. Grammatical error correction: noisy channel modeling vs. transformers.
Класичні моделі та глибокі нейронні мережі для виправлення помилок в тексті.

9. Deep NNs deployment: TensorFlow vs. PyTorch vs. Hugging Face use cases.
Як найкраще передати модель в продакшн, як зробити її швидкою, ефективною та легко задеплоїти її, використовуючи найбільш популярні фреймворки Deep Learning.

Кому буде корисним цей курс

1. Data science спеціалістам / спеціалісткам
Щоб покращити навички вирішення NLP завдань за допомогою Deep Learning.

2. Комп’ютерним лінгвістам / лінгвісткам
Щоб заповнити прогалину у знаннях під час створення глибоких нейронних мереж в контексті NLP.

3. Cтудентам / студенткам технічних ВНЗ
Для поглиблення знань у сфері сучасних підходів до вирішення NLP завдань.

Зареєструватися

👍НравитсяПонравилось0
В избранноеВ избранном0
LinkedIn

Нет комментариев

Подписаться на комментарииОтписаться от комментариев Комментарии могут оставлять только пользователи с подтвержденными аккаунтами.

Подписаться на комментарии