AI & ML дайджест #2: Предсказание будущего, зоопарк нейронных сетей, deep learning и Вселенная

В выпуске: ИИ-гиганты объединяются в своей работе над искусственным интеллектом, предсказания человеческих действий, state of the art генерации человеческого голоса и видео.

Новости, обсуждения, интервью

Amazon, Facebook, Google DeepMind, IBM и Microsoft объединяются для работы над ИИ и его контролем.

Не просто умный, а очень умный фоторедактор от ученых из Berkley и разработчиков Adobe.

Ученые снова объяснили, что deep learning работает. На этот раз — потому что так работает Вселенная.

Intel бросается в борьбу за hardware рынок в машинном обучении, покупая стартап Movidius.

Рисерч отдел Google публикует свой датасет для обучения действий роботов.

Еще один обзор трендов в машинном обучении от Algorithmia.

Обзор работы с датасетом SpaceNet — спутниковых снимков с помощью DIGITS.

Платформа для обучения своих автопилотов от NVIDIA.

Обсуждение алгоритмов по предсказанию человеческих действий, видео внутри.

Приложение «умной клавиатуры» SwiftKey теперь тоже работает на нейронных сетях.

А вот и первый ИИ-психолог — Amelia.

Примеры работы алгоритмов и код

Великолепный иллюстративный материал по разным видам рекуррентных нейронных сетей.

Небольшая статья о сегментации изображений в Facebook.

Очень красивые картинки про зоопарк нейронных сетей.

UberNet — детекция, сегментация, salient object detection и многое другое в одной нейронной сети.

WaveNet — генерация человеческого голоса, уже почти похожего на настоящий от DeepMind.

Новая генеративная модель для видео (и предсказания будущего по видео). Только не пугайтесь нарисованных нейронной сеткой младенцев.

Распознавание темпа музыки (bpm) с помощью сверточных нейронных сетей.

Туториал по транслитерации с помощью рекуррентных нейронных сетей.

Научные статьи

Обновление по нашумевшей статье «Stacked Approximation Regression Machines from First Principles», где авторы заявили, что могут учить сетки на 0.5% данных — не совсем это правда.

A Neural Transducer — исследователи из Google представляют sequence-to-sequence модель, которая может работать с частично полной последовательностью или потоком данных без attention mechanisms.

Снова из Google, AdaNet — нейронная сеть, которая учит не только веса, а и свою структуру.

Распознавание «размытых» (obfuscated) частей изображений с deep learning.

Microsoft представляет свою нейронную архитектуру для распознавания речи — LACE.

Progressive Neural Networks — парни из DeepMind учат не забывать предыдущие знания при fine-tuning.


← Предыдущий выпуск: AI & ML дайджест #1
Следующий выпуск: AI & ML дайджест #3

👍НравитсяПонравилось0
В избранноеВ избранном0
Подписаться на автора
LinkedIn



Підписуйтесь: Soundcloud | Google Podcast | YouTube


5 комментариев

Подписаться на комментарииОтписаться от комментариев Комментарии могут оставлять только пользователи с подтвержденными аккаунтами.

Отдельное спасибо за виды рекуррентных сетей!
Еще хотел бы добавить работу от google — A Neural Network for Machine Translation, at Production Scale. Думаю многим было бы интересно, если кто пропустил, посмотреть на пример использования сетей в настоящих условиях, а не только в работах.

Классная статья, я проглядел :)

А да, Алекс не бросай этот дайджест, не смотря на то, что обсуждения ниже нет. Я каждый твой дайджест в закладки отправляю и по мере наличия времени изучаю.

А обсуждать здесь что-то сложно. Чтобы обсуждать надо описанное пощупать, это время и много.

Спасибо, я пропадал два месяца, теперь снова буду писать.

Спасибо, все очень интересно!

Подписаться на комментарии